Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.557
Filtrar
1.
Mol Plant Pathol ; 25(4): e13447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561315

RESUMO

Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Reprodutibilidade dos Testes , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/farmacologia , Imunidade Vegetal/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
2.
Sci Rep ; 14(1): 7908, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575675

RESUMO

Receptor tyrosine kinases (RTKs) initiate cellular signaling pathways, which are regulated through a delicate balance of phosphorylation and dephosphorylation events. While many studies of RTKs have focused on downstream-activated kinases catalyzing the site-specific phosphorylation, few studies have focused on the phosphatases carrying out the dephosphorylation. In this study, we analyzed six protein phosphatase networks using chemical inhibitors in context of epidermal growth factor receptor (EGFR) signaling by mass spectrometry-based phosphoproteomics. Specifically, we focused on protein phosphatase 2C (PP2C), involved in attenuating p38-dependent signaling pathways in various cellular responses, and confirmed its effect in regulating p38 activity in EGFR signaling. Furthermore, utilizing a p38 inhibitor, we classified phosphosites whose phosphorylation status depends on PP2C inhibition into p38-dependent and p38-independent sites. This study provides a large-scale dataset of phosphatase-regulation of EGF-responsive phosphorylation sites, which serves as a useful resource to deepen our understanding of EGFR signaling.


Assuntos
Receptores ErbB , Transdução de Sinais , Receptores ErbB/metabolismo , Fosforilação , Fosfoproteínas Fosfatases/metabolismo
3.
Aging (Albany NY) ; 16(5): 4116-4137, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38441530

RESUMO

Cellular senescence is a permanent cell cycle arrest that can be triggered by both internal and external genotoxic stressors, such as telomere dysfunction and DNA damage. The execution of senescence is mainly by two pathways, p16/RB and p53/p21, which lead to CDK4/6 inhibition and RB activation to block cell cycle progression. While the regulation of p53/p21 signaling in response to DNA damage and other insults is well-defined, the regulation of the p16/RB pathway in response to various stressors remains poorly understood. Here, we report a novel function of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, as a potent inhibitor of p16 expression and senescence induction by ionizing radiation (IR), such as γ-rays. The results show that ectopic PR55α expression in normal pancreatic cells inhibits p16 transcription, increases RB phosphorylation, and blocks IR-induced senescence. Conversely, PR55α-knockdown by shRNA in pancreatic cancer cells elevates p16 transcription, reduces RB phosphorylation, and triggers senescence induction after IR. Furthermore, this PR55α function in the regulation of p16 and senescence is p53-independent because it was unaffected by the mutational status of p53. Moreover, PR55α only affects p16 expression but not p14 (ARF) expression, which is also transcribed from the same CDKN2A locus but from an alternative promoter. In normal human tissues, levels of p16 and PR55α proteins were inversely correlated and mutually exclusive. Collectively, these results describe a novel function of PR55α/PP2A in blocking p16/RB signaling and IR-induced cellular senescence.


Assuntos
Proteína Fosfatase 2 , Proteína Supressora de Tumor p53 , Humanos , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo
4.
Parasit Vectors ; 17(1): 142, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500196

RESUMO

BACKGROUND: The protozoan parasite Toxoplasma gondii encodes dozens of phosphatases, among which a plant-like phosphatase absent from mammalian genomes named PPKL, which is involved in regulating brassinosteroid signaling in Arabidopsis, was identified in the genome. Among the Apicomplexa parasites, T. gondii is an important and representative pathogen in humans and animals. PPKL was previously identified to modulate the apical integrity and morphology of the ookinetes and parasite motility and transmission in another important parasite, Plasmodium falciparum. However, the exact function of PPKL in the asexual stages of T. gondii remains unknown. METHODS: The plant auxin-inducible degron (AID) system was applied to dissect the phenotypes of PPKL in T. gondii. We first analyzed the phenotypes of the AID parasites at an induction time of 24 h, by staining of different organelles using their corresponding markers. These analyses were further conducted for the parasites grown in auxin for 6 and 12 h using a quantitative approach and for the type II strain ME49 of AID parasites. To further understand the phenotypes, the potential protein interactions were analyzed using a proximity biotin labeling approach. The essential role of PPKL in parasite replication was revealed. RESULTS: PPKL is localized in the apical region and nucleus and partially distributed in the cytoplasm of the parasite. The phenotyping of PPKL showed its essentiality for parasite replication and morphology. Further dissections demonstrate that PPKL is required for the maturation of daughter parasites in the mother cells, resulting in multiple nuclei in a single parasite. The phenotype of the daughter parasites and parasite morphology were observed in another type of T. gondii strain ME49. The substantial defect in parasite replication and morphology could be rescued by genetic complementation, thus supporting its essential function for PPKL in the formation of parasites. The protein interaction analysis showed the potential interaction of PPKL with diverse proteins, thus explaining the importance of PPKL in the parasite. CONCLUSIONS: PPKL plays an important role in the formation of daughter parasites, revealing its subtle involvement in the proper maturation of the daughter parasites during division. Our detailed analysis also demonstrated that depletion of PPKL resulted in elongated tubulin fibers in the parasites. The important roles in the parasites are potentially attributed to the protein interaction mediated by kelch domains on the protein. Taken together, these findings contribute to our understanding of a key phosphatase involved in parasite replication, suggesting the potential of this phosphatase as a pharmaceutic target.


Assuntos
Parasitos , Toxoplasma , Humanos , Animais , Toxoplasma/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ácidos Indolacéticos/metabolismo , Mamíferos
5.
Mol Plant Pathol ; 25(3): e13425, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462784

RESUMO

Phosphatases are important regulators of protein phosphorylation and various cellular processes, and they serve as counterparts to kinases. In this study, our comprehensive analysis of oomycete complete proteomes unveiled the presence of approximately 3833 phosphatases, with most species estimated to have between 100 and 300 putative phosphatases. Further investigation of these phosphatases revealed a significant increase in protein serine/threonine phosphatases (PSP) within oomycetes. In particular, we extensively studied the metallo-dependent protein phosphatase (PPM) within the PSP family in the model oomycete Phytophthora sojae. Our results showed notable differences in the expression patterns of PPMs throughout 10 life stages of P. sojae, indicating their vital roles in various stages of oomycete pathogens. Moreover, we identified 29 PPMs in P. sojae, and eight of them possessed accessory domains in addition to phosphate domains. We investigated the biological function of one PPM protein with an extra PH domain (PPM1); this protein exhibited high expression levels in both asexual developmental and infectious stages. Our analysis confirmed that PPM1 is indeed an active protein phosphatase, and its accessory domain does not affect its phosphatase activity. To delve further into its function, we generated knockout mutants of PPM1 and validated its essential roles in mycelial growth, sporangia and oospore production, as well as infectious stages. To the best of our knowledge, this study provides the first comprehensive inventory of phosphatases in oomycetes and identifies an important phosphatase within the expanded serine/threonine phosphatase group in oomycetes.


Assuntos
Oomicetos , Phytophthora , Proteoma/metabolismo , Phytophthora/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Serina/metabolismo
6.
J Biol Chem ; 300(3): 105695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301894

RESUMO

BHLHE40 is a basic helix-loop-helix transcription factor that is involved in multiple cell activities including differentiation, cell cycle, and epithelial-to-mesenchymal transition. While there is growing evidence to support the functions of BHLHE40 in energy metabolism, little is known about the mechanism. In this study, we found that BHLHE40 expression was downregulated in cases of endometrial cancer of higher grade and advanced disease. Knockdown of BHLHE40 in endometrial cancer cells resulted in suppressed oxygen consumption and enhanced extracellular acidification. Suppressed pyruvate dehydrogenase (PDH) activity and enhanced lactated dehydrogenase (LDH) activity were observed in the knockdown cells. Knockdown of BHLHE40 also led to dephosphorylation of AMPKα Thr172 and enhanced phosphorylation of pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) Ser293 and lactate dehydrogenase A (LDHA) Tyr10. These results suggested that BHLHE40 modulates PDH and LDH activity by regulating the phosphorylation status of PDHA1 and LDHA. We found that BHLHE40 enhanced AMPKα phosphorylation by directly suppressing the transcription of an AMPKα-specific phosphatase, PPM1F. Our immunohistochemical study showed that the expression of BHLHE40, PPM1F, and phosphorylated AMPKα correlated with the prognosis of endometrial cancer patients. Because AMPK is a central regulator of energy metabolism in cancer cells, targeting the BHLHE40‒PPM1F‒AMPK axis may represent a strategy to control cancer development.


Assuntos
Proteínas Quinases Ativadas por AMP , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias do Endométrio , Metabolismo Energético , Fosfoproteínas Fosfatases , Feminino , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/fisiopatologia , Metabolismo Energético/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Consumo de Oxigênio/genética , Regulação Neoplásica da Expressão Gênica/genética , Fosforilação/genética
7.
FEBS Open Bio ; 14(4): 545-554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318686

RESUMO

Protein phosphatase 6 is a Ser/Thr protein phosphatase and its catalytic subunit is Ppp6c. Ppp6c is thought to be indispensable for proper growth of normal cells. On the other hand, loss of Ppp6c accelerates growth of oncogenic Ras-expressing cells. Although it has been studied in multiple contexts, the role(s) of Ppp6c in cell proliferation remains controversial. It is unclear how oncogenic K-Ras overcomes cell proliferation failure induced by Ppp6c deficiency; therefore, in this study, we attempted to shed light on how oncogenic K-Ras modulates tumor cell growth. Contrary to our expectations, loss of Ppp6c decreased proliferation, anchorage-independent growth in soft agar, and tumor formation of oncogenic Ras-expressing mouse embryonic fibroblasts (MEFs). These findings show that oncogenic K-RasG12V cannot overcome proliferation failure caused by loss of Ppp6c in MEFs.


Assuntos
Fibroblastos , Fosfoproteínas Fosfatases , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Proliferação de Células/genética , Fibroblastos/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 326(3): H860-H869, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38276948

RESUMO

Targeting alternative exons for therapeutic gain has been achieved in a few instances and potentially could be applied more broadly. The myosin phosphatase (MP) enzyme is a critical hub upon which signals converge to regulate vessel tone. Alternative exon 24 of myosin phosphatase regulatory subunit (Mypt1 E24) is an ideal target as toggling between the two isoforms sets smooth muscle sensitivity to vasodilators such as nitric oxide (NO). This study aimed to develop a gene-based therapy to suppress splicing of Mypt1 E24 thereby switching MP enzyme to the NO-responsive isoform. CRISPR/Cas9 constructs were effective at editing of Mypt1 E24 in vitro; however, targeting of vascular smooth muscle in vivo with AAV9 was inefficient. In contrast, an octo-guanidine conjugated antisense oligonucleotide targeting the 5' splice site of Mypt1 E24 was highly efficient in vivo. It reduced the percent splicing inclusion of Mypt1 E24 from 80% to 10% in mesenteric arteries. The maximal and half-maximal effects occurred at 12.5 and 6.25 mg/kg, respectively. The effect persisted for at least 1 mo without toxicity. This highly effective splice-blocking antisense oligonucleotide could be developed as a novel therapy to reverse vascular dysfunction common to diseases such as hypertension and heart failure.NEW & NOTEWORTHY Alternative exon usage is a major driver of phenotypic diversity in all cell types including smooth muscle. However, the functional significance of most of the hundreds of thousands of alternative exons has not been defined, nor in most cases even tested. If their importance to vascular function were known these alternative exons could represent novel therapeutic targets. Here, we present injection of Vivo-morpholino splice-blocking antisense oligonucleotides as a simple, efficient, and cost-effective method for suppression of alternative exon usage in vascular smooth muscle in vivo.


Assuntos
Músculo Liso Vascular , Oligonucleotídeos Antissenso , Músculo Liso Vascular/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Fosfoproteínas Fosfatases/metabolismo , Éxons , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Fosforilação
9.
CNS Neurosci Ther ; 30(2): e14377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37622283

RESUMO

INTRODUCTION: Major depressive disorder (MDD) affects about 17% population in the world. Although abnormal energy metabolism plays an important role in the pathophysiology of MDD, however, how deficiency of adenosine triphosphate (ATP) products affects emotional circuit and what regulates ATP synthesis are still need to be elaborated. AIMS: Our study aimed to investigate how deficiency of PGAM5-mediated depressive behavior. RESULTS: We firstly discovered that PGAM5 knockout (PGAM5-/- ) mice generated depressive-like behaviors. The phenotype was reinforced by the observation that chronic unexpected mild stress (CUMS)-induced depressive mice exhibited lowered expression of PGAM5 in prefrontal cortex (PFC), hippocampus (HIP), and striatum. Next, we found, with the using of functional magnetic resonance imaging (fMRI), that the functional connectivity between PFC reward system and the PFC volume were reduced in PGAM5-/- mice. PGAM5 ablation resulted in the loss of dendritic spines and lowered density of PSD95 in PFC, but not in HIP. Finally, we found that PGAM5 ablation led to lowered ATP concentration in PFC, but not in HIP. Coimmunoprecipitation study showed that PGAM5 directly interacted with the ATP F1 F0 synthase without influencing the interaction between ATP F1 F0 synthase and Bcl-xl. We then conducted ATP administration to PGAM5-/- mice and found that ATP could rescue the behavioral and neuronal phenotypes of PGAM5-/- mice. CONCLUSIONS: Our findings provide convincing evidence that PGAM5 ablation generates depressive-like behaviors via restricting neuronal ATP production so as to impair the number of neuronal spines in PFC.


Assuntos
Depressão , Transtorno Depressivo Maior , Camundongos , Animais , Depressão/diagnóstico por imagem , Depressão/genética , Depressão/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Trifosfato de Adenosina/metabolismo , Córtex Pré-Frontal/metabolismo , Metabolismo Energético , Estresse Psicológico/metabolismo , Camundongos Knockout , Fosfoproteínas Fosfatases/metabolismo
10.
Acta Pharmacol Sin ; 45(1): 125-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37684381

RESUMO

Acute kidney injury (AKI) is a worldwide public health problem characterized by the massive loss of tubular cells. However, the precise mechanism for initiating tubular cell death has not been fully elucidated. Here, we reported that phosphoglycerate mutase 5 (PGAM5) was upregulated in renal tubular epithelial cells during ischaemia/reperfusion or cisplatin-induced AKI in mice. PGAM5 knockout significantly alleviated the activation of the mitochondria-dependent apoptosis pathway and tubular apoptosis. Apoptosis inhibitors alleviated the activation of the mitochondria-dependent apoptosis pathway. Mechanistically, as a protein phosphatase, PGAM5 could dephosphorylate Bax and facilitate Bax translocation to the mitochondrial membrane. The translocation of Bax to mitochondria increased membrane permeability, decreased mitochondrial membrane potential and facilitated the release of mitochondrial cytochrome c (Cyt c) into the cytoplasm. Knockdown of Bax attenuated PGAM5 overexpression-induced Cyt c release and tubular cell apoptosis. Our results demonstrated that the increase in PGAM5-mediated Bax dephosphorylation and mitochondrial translocation was implicated in the development of AKI by initiating mitochondrial Cyt c release and activating the mitochondria-dependent apoptosis pathway. Targeting this axis might be beneficial for alleviating AKI.


Assuntos
Injúria Renal Aguda , Citocromos c , Camundongos , Animais , Citocromos c/metabolismo , Fosfoglicerato Mutase/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/fisiologia , Mitocôndrias/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Proteínas de Transporte/metabolismo , Fosfoproteínas Fosfatases/metabolismo
11.
Nucleic Acids Res ; 52(3): 1173-1187, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38084915

RESUMO

Efficient DNA repair and limitation of genome rearrangements rely on crosstalk between different DNA double-strand break (DSB) repair pathways, and their synchronization with the cell cycle. The selection, timing and efficacy of DSB repair pathways are influenced by post-translational modifications of histones and DNA damage repair (DDR) proteins, such as phosphorylation. While the importance of kinases and serine/threonine phosphatases in DDR have been extensively studied, the role of tyrosine phosphatases in DNA repair remains poorly understood. In this study, we have identified EYA4 as the protein phosphatase that dephosphorylates RAD51 on residue Tyr315. Through its Tyr phosphatase activity, EYA4 regulates RAD51 localization, presynaptic filament formation, foci formation, and activity. Thus, it is essential for homologous recombination (HR) at DSBs. DNA binding stimulates EYA4 phosphatase activity. Depletion of EYA4 decreases single-stranded DNA accumulation following DNA damage and impairs HR, while overexpression of EYA4 in cells promotes dephosphorylation and stabilization of RAD51, and thereby nucleoprotein filament formation. Our data have implications for a pathological version of RAD51 in EYA4-overexpressing cancers.


Assuntos
Rad51 Recombinase , Transativadores , DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Fosfoproteínas Fosfatases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Tirosina/genética , Humanos , Transativadores/metabolismo
12.
Biochem Biophys Res Commun ; 693: 149353, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38101002

RESUMO

Protein phosphatase 6 (PP6) is a Ser/Thr protein phosphatase with the catalytic subunit Ppp6c. Recent cell-level studies have revealed that Ppp6c knockdown suppresses neurite outgrowth, suggesting that Ppp6c is involved in the development of the nervous system. We found that the function of PP6 in neurons is essential for mouse survival after birth, as all neural-stem-cell-specific KO (Ppp6cNKO) and neuron-specific KO mice died within 2 days of birth. By contrast, approximately 40 % of oligodendrocyte-specific KO mice died within 2 days of birth, whereas others survived until weaning or later, suggesting that the lethality of PP6 loss differs between neurons and oligodendrocytes. Furthermore, the fetal brain of Ppp6cNKO mice exhibited decreased numbers of neurons in layers V-VI and interneurons in layer I of the neocortex. These results suggest for the first time that Ppp6c is essential for neonatal survival and proper development of neurons and interneurons in the neocortex.


Assuntos
Morte Perinatal , Humanos , Feminino , Camundongos , Animais , Neurônios/metabolismo , Interneurônios/metabolismo , Fosfoproteínas Fosfatases/metabolismo
13.
Eur J Med Chem ; 264: 116031, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101039

RESUMO

Phosphatase is a kind of enzyme that can dephosphorylate target proteins, which can be divided into serine/threonine phosphatase and tyrosine phosphatase according to its mode of action. Current evidence showed multiple phosphatases were highly correlated with diseases including various cancers, demonstrating them as potential targets. However, currently, targeting phosphatases with small molecules faces many challenges, resulting in no drug approved. In this case, phosphatases are even regarded as "undruggable" targets for a long time. Recently, a variety of strategies have been adopted in the design of small molecule inhibitors targeting phosphatases, leading many of them to enter into the clinical trials. In this review, we classified these inhibitors into 4 types, including (1) molecular glues, (2) small molecules targeting catalytic sites, (3) allosteric inhibition, and (4) bifunctional molecules (proteolysis targeting chimeras, PROTACs). These molecules with diverse strategies prove the feasibility of phosphatases as drug targets. In addition, the combination therapy of phosphatase inhibitors with other drugs has also entered clinical trials, which suggests a broad prospect. Thus, targeting phosphatases with small molecules by different strategies is emerging as a promising way in the modulation of pathogenetic phosphorylation.


Assuntos
Neoplasias , Fosfoproteínas Fosfatases , Humanos , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/uso terapêutico , Proteínas Tirosina Fosfatases , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Fosforilação , Neoplasias/tratamento farmacológico , Proteólise
14.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139370

RESUMO

The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.


Assuntos
Fosfatases de Especificidade Dupla , Proteínas Quinases Ativadas por Mitógeno , Fosfatases de Especificidade Dupla/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Macrófagos Associados a Tumor/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Mitógenos , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo
15.
Wei Sheng Yan Jiu ; 52(6): 979-992, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38115663

RESUMO

OBJECTIVE: To investigate the toxic effects and potential mechanisms of tri(1, 3-dichloro-2-propyl) phosphate(TDCIPP) exposure on the mouse testicular supporting cell line(TM4 cells). METHODS: TM4 cells were treated with different concentrations of TDCIPP(0, 12.5, 25 and 50 µmol/L), or 50 µmol/L TDCIPP combined with antioxidant N-acetylcysteine(NAC) for 24 h. Cell viability was assessed using the CCK8 assay, intracellular ROS levels were detected using the DCFH-DA probe, and the protein levels of oxeiptosis-related proteins, such as KEAP1, PGAM5, AIFM1 and phosphorylated AIFM1(p-AIFM1), were detected using Western blot. RESULTS: TDCIPP dose-dependently reduced TM4 cell viability(P<0.05). ROS levels in TM4 cells treated with 12.5, 25 and 50 µmol/L TDCIPP were 9.44±1.42, 17.25±1.81 and 18.38±2.66, respectively, significantly higher than the control group's 5.08±0.90(P<0.05). ROS levels in the 5 mmol/L NAC+50 µmol/L TDCIPP group were 14.70±0.50, significantly lower than the corresponding TDCIPP group's 26.44±0.73(P<0.05). The activity of TM4 cells in KEAP1siRNA+TDCIPP group and PGAM5siRNA+TDCIPP group were 77.00±1.73 and 76.67±1.53, respectively, significantly higher than TDCIPP group 68.67±1.53(P<0.05). The relative expression of KEAP1 protein in TM4 cells treated with 25 and 50 µmol/L TDCIPP were 0.77±0.04 and 0.82±0.02, respectively, significantly higher than the control group's 0.57±0.01(P<0.05). The relative expression of PGAM5 protein in TDCIPP-treated TM4 cells were 1.17±0.04, 1.38±0.03 and 1.41±0.03, respectively, significantly higher than the control group's 0.81±0.02(P<0.05). The relative expression of AIFM1 protein were 0.42±0.01, 0.63±0.01 and 0.68±0.02, respectively, significantly higher than the control group's 0.34±0.02(P<0.05). The relative expression of p-AIFM1 protein were 1.73±0.02, 1.52±0.02 and 0.73±0.01, respectively, significantly lower than the control group's 2.25±0.02(P<0.05). In the 5 mmol/L NAC+50 µmol/L TDCIPP group, the relative expression of KEAP1, PGAM5 and AIFM1 proteins in TM4 cells were 0.61±0.01, 0.58±0.01 and 0.48±0.03, respectively, significantly lower than the TDCIPP group's 0.86±0.12(P<0.05), 0.74±0.02(P<0.05) and 0.92±0.01(P<0.05). The relative expression of p-AIFM1 protein in the 5 mmol/L NAC+50 µmol/L TDCIPP group was 0.45±0.11, significantly higher than the TDCIPP group's 0.23±0.01(P<0.05). CONCLUSION: The reduction of TM4 cell viability induced by TDCIPP may be related to ROS-mediated regulation of the KEAP1/PGAM5/AIFM1 pathway, leading to oxeiptosis.


Assuntos
Fator 2 Relacionado a NF-E2 , Fosfoproteínas Fosfatases , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Sobrevivência Celular , Fator 2 Relacionado a NF-E2/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/farmacologia
16.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 721-729, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37927012

RESUMO

Objective To investigate the expression level of serine/threonine phosphoprotein phosphatase 4C(PPP4C)in gastric cancer,and analyze its relationship with prognosis and the underlying regulatory mechanism.Methods The clinical data of 104 gastric cancer patients admitted to the First Affiliated Hospital of Bengbu Medical College between January 2012 and August 2016 were collected.Immunohistochemical staining was employed to determine the expression levels of PPP4C and Ki-67 in the gastric cancer tissue.The gastric cancer cell lines BGC823 and HGC27 were cultured and transfected with the vector for PPP4C knockdown,the vector for PPP4C overexpression,and the lentiviral vector(control),respectively.The effects of PPP4C on the cell cycle and proliferation were analyzed and the possible regulatory mechanisms were explored.Results PPP4C was highly expressed in gastric cancer(P<0.001),and its expression promoted malignant progression of the tumor(all P<0.01).Univariate and Cox multivariate analysis clarified that high expression of PPP4C was an independent risk factor affecting the 5-year survival rate of gastric cancer patients(P=0.003).Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis suggested that PPP4C may be involved in the cell cycle.The correlation analysis showed that the expression of PPP4C was positively correlated with that of Ki-67 in gastric cancer(P<0.001).The up-regulation of PPP4C expression increased the proportion of tumor cells in the S phase,alleviated the G2/M phase arrest,and promoted the proliferation of gastric cancer cells and the expression of cyclin D1 and cyclin-dependent kinase 6(CDK6)(all P<0.05).The down-regulation of PPP4C decreased the proportion of gastric cancer cells in the S phase,promoted G2/M phase arrest,and inhibited cell proliferation and the expression of cyclin D1,CDK6,and p53(all P<0.05).p53 inhibitors promoted the proliferation of BGC823 and HGC27 cells in the PPP4C knockdown group(P<0.001,P<0.001),while p53 activators inhibited the proliferation of BGC823 and HGC27 cells in the PPP4C overexpression group(P<0.001,P=0.002).Conclusions PPP4C is highly expressed in gastric cancer and affects the prognosis of the patients.It may increase the proportion of gastric cancer cells in the S phase and alleviate the G2/M phase arrest by inhibiting p53 signaling,thereby promoting cell proliferation.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Proteína Supressora de Tumor p53 , Fosfoproteínas/metabolismo , Antígeno Ki-67 , Linhagem Celular Tumoral , Prognóstico , Proliferação de Células , Fosfoproteínas Fosfatases/metabolismo , Treonina , Serina
17.
Proc Natl Acad Sci U S A ; 120(44): e2315171120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37889931

RESUMO

PPM1H phosphatase reverses Parkinson's disease-associated, Leucine Rich Repeat Kinase 2-mediated Rab GTPase phosphorylation. We show here that PPM1H relies on an N-terminal amphipathic helix for Golgi localization. The amphipathic helix enables PPM1H to bind to liposomes in vitro, and small, highly curved liposomes stimulate PPM1H activity. We artificially anchored PPM1H to the Golgi, mitochondria, or mother centriole. Our data show that regulation of Rab10 GTPase phosphorylation requires PPM1H access to Rab10 at or near the mother centriole. Moreover, poor colocalization of Rab12 explains in part why it is a poor substrate for PPM1H in cells but not in vitro. These data support a model in which localization drives PPM1H substrate selection and centriolar PPM1H is critical for regulation of Rab GTPase-regulated ciliogenesis. Moreover, Golgi localized PPM1H may maintain active Rab GTPases on the Golgi to carry out their nonciliogenesis-related functions in membrane trafficking.


Assuntos
Doença de Parkinson , Monoéster Fosfórico Hidrolases , Humanos , Fosforilação , Monoéster Fosfórico Hidrolases/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Lipossomos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Fosfoproteínas Fosfatases/metabolismo
18.
J Vet Med Sci ; 85(12): 1319-1323, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37880139

RESUMO

Transforming growth factor-beta (TGF-ß) is a multifunctional cytokine that controls various cellular processes. Protein phosphatase 6 (PP6) is an evolutionarily conserved serine/threonine protein phosphatase with diverse functions in cell signaling. However, it has not been linked to TGF-ß signaling. We found that TGF-ß treatment increased PP6 protein levels via transcriptional and post-translational regulation. Loss of the Ppp6c gene suppressed TGF-ß-induced canonical Smad3 phosphorylation and its transcriptional activity. PP6 knockout also inhibited non-canonical p38 mitogen-activated protein kinase (MAPK) pathway. Moreover, PP6 depletion suppressed cell migration induced by TGF-ß. These findings uncovered the role of PP6 as a positive regulator for TGF-ß signaling.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Fator de Crescimento Transformador beta , Animais , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fibroblastos/metabolismo , Transdução de Sinais , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação , Fatores de Crescimento Transformadores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
19.
J Virol ; 97(11): e0147023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882521

RESUMO

IMPORTANCE: As a member of the δ-coronavirus family, porcine deltacoronavirus (PDCoV) is a vital reason for diarrhea in piglets, which can contribute to high morbidity and mortality rates. Initially identified in Hong Kong in 2012, the virus has rapidly spread worldwide. During PDCoV infection, the virus employs evasion mechanisms to evade host surveillance, while the host mounts corresponding responses to impede viral replication. Our research has revealed that PDCoV infection down-regulates the expression of PGAM5 to promote virus replication. In contrast, PGAM5 degrades PDCoV N through autophagy by interacting with the cargo receptor P62 and the E3 ubiquitination ligase STUB1. Additionally, PGAM5 interacts with MyD88 and TRAF3 to activate the IFN signal pathway, resulting in the inhibition of viral replication.


Assuntos
Infecções por Coronavirus , Proteínas do Nucleocapsídeo de Coronavírus , Deltacoronavirus , Interferon Tipo I , Proteínas Mitocondriais , Fosfoproteínas Fosfatases , Proteólise , Doenças dos Suínos , Suínos , Replicação Viral , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Interferon Tipo I/imunologia , Transdução de Sinais , Suínos/virologia , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Deltacoronavirus/imunologia , Deltacoronavirus/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Mitocondriais/metabolismo , Regulação para Baixo , Evasão da Resposta Imune , Proteínas de Ligação a RNA/metabolismo
20.
Biochem Pharmacol ; 217: 115811, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717692

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most aggressive solid tumours in humans. Despite its high mortality rate, effective targeted therapeutic strategies remain limited due to incomplete understanding of the underlying biological mechanisms. The NAP1L gene family has been implicated in the development and progression of various human tumours. However, the specific function and role of NAP1L5 (nucleosome assembly protein-like 5) in PDAC have not been fully elucidated. Therefore, in this study, we aimed to investigate the role of NAP1L5 in PDAC and explore the regulatory relationship between NAP1L5 and its potential downstream molecule PHLPP1 (PH domain Leucine-rich repeat Protein Phosphatase 1) in PDAC. Our study revealed that NAP1L5 is notably upregulated in PDAC. Moreover, both in vivo and in vitro experiments demonstrated that knockdown of NAP1L5 suppressed the proliferation of PDAC cells. Mechanistically, NAP1L5 was found to promote PDAC progression by activating the AKT/mTOR signalling pathway in a PHLPP1-dependent manner. Specifically, NAP1L5 binds to PHLPP1 and facilitates the ubiquitination-mediated degradation of PHLPP1, ultimately resulting in reduced PHLPP1 expression. Notably, TRIM29, recruited by NAP1L5, was found to be involved in facilitating K48-linked ubiquitination of PHLPP1. Our findings indicate that NAP1L5 overexpression promotes the proliferation of PDAC cells by inhibiting PHLPP1 expression. These novel insights suggest that NAP1L5 may serve as a potential therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transdução de Sinais , Ubiquitinação , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...